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Abstract. A simple model is presented which interpolates between the DGLAP and BFKL regimes in
deep inelastic ep scattering. This model is based on the CCFM and LDC models, and it is simple enough
to provide an intuitive picture of the transition region between the two domains. Results are presented
for both fixed and running coupling; for fixed coupling the transition between the domains occurs at a
constant ratio between ln k2

⊥ and ln 1/x, while for a running coupling it occurs for constant ratio between
ln ln k2

⊥ and ln 1/x.

1 Introduction

When k⊥ is large and 1/x is limited we are in the DGLAP
regime, and when 1/x is large and k⊥ is limited we are in
the BFKL regime. An essential question is then: What is
large? Where is the boundary between the regimes, and
what is the behavior in the transition region? We will here
present a simple interpolating model which can illuminate
these questions. The model is based on the CCFM [1]
and LDC [2] models, and is simple enough to provide an
intuitive picture of the dynamical mechanisms.

The model is relevant for small x, and has a smooth
transition between large k⊥, where ordered chains dom-
inate, and small k⊥, where non-ordered chains are most
important. We will first study only leading terms in ln 1/x,
and for large k⊥ the result therefore corresponds to the
double log approximation and not really to the DGLAP
regime. Some non-leading effects in ln 1/x will be dis-
cussed in a subsequent section.

For large k⊥ the non-integrated structure function
F(x, k2

⊥) is dominated by contributions from ordered
chains which satisfy [3] (for notation see Fig. 1)

x ≡ xN+1 < xN < . . . x1 < 1,
k2

⊥ ≡ k2
⊥N+1 > k2

⊥N > . . . k2
⊥1 > Q2

0. (1)

In the simpler case with a fixed coupling αs, and including
only the 1/z pole in the splitting function, the contribution
from each chain is a product of factors (3αs/π) · dxi/xi ·
dk2

⊥,i/k
2
⊥,i. This implies

F(x, k2
⊥) ∼ ᾱ

∑
N

∫ N∏
ᾱ
dxi

xi

dk2
⊥,i

k2
⊥,i

θ(xi−1 − xi)
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Fig. 1. A fan diagram

×θ(k2
⊥,i − k2

⊥,i−1) (2)

= ᾱ
∑
N

∫ N∏
ᾱdlidκiθ(li − li−1)θ(κi − κi−1),

where ᾱ ≡ 3αs/π, l ≡ ln(1/x) and κ ≡ ln(k2
⊥/Λ2

QCD).
Integration over κi with the θ-functions gives the phase
space for N ordered values κi. The result is κN/N !. (If
there is a soft cutoff k⊥cut we obtain more exactly (κ −
κcut)N/N !. For a fixed coupling we could use k⊥cut as
the scale in the definition of κ, but this would be less
convenient for a running coupling.) The integrations over
li give a similar result, and defining the rescaled structure
function G = 1/ᾱ · F , we obtain the well-known DLLA
result

G(x, k2
⊥) ≡ 1

ᾱ
F(x, k2

⊥) ∼
∑
N

ᾱN · lN

N !
· κN

N !
= I0(2

√
ᾱlκ),

(3)
where I0 is a modified Bessel function.

In the BFKL region non-ordered chains contribute,
and the result is a power-like increase for small x-values
[4],
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F ∼ 1
xλ

f(κ, l), (4)

where the function f(κ, l) describes a random walk in κ
[4,5].

In the interpolation region we must calculate suppres-
sed contributions from non-ordered chains. It is then nec-
essary to specify the separation between initial state radi-
ation and final state radiation, which is not given by Na-
ture, but has to be defined by the calculation scheme. This
separation should have the property that final state emis-
sions do not affect the total cross section, i.e. the struc-
ture function, and their effect on the final state can be
described by Sudakov form factors. A particular scheme
was chosen by Ciafaloni, Catani, Fiorani, and Marchesini
(the CCFM model) [1]. Here the initial state radiation is
ordered in angle (or rapidity) and energy (or q+ = q0+qL).
The contribution from a particular chain is then given by
the expression∏

ᾱ
dzi

zi

dq2
⊥,i

q2
⊥,i

∆ne(zi, k⊥,i, q⊥,i), (5)

where ∆ne is a noneikonal form factor and zi = xi/xi−1.
The linked dipole chain (LDC) model [2] is a reformu-

lation and generalization of the CCFM result in a scheme
where more gluons are treated as final state radiation. The
initial chain is ordered in q+ = q0 + qL and q− = q0 − qL,
and q⊥ satisfies q⊥ > min(k⊥,i, k⊥,i−1). This implies that
there are fewer chains; one LDC chain corresponds to a
set of CCFM chains. It then turns out that all the cor-
responding noneikonal form factors add up to just unity,
and thus the contribution from each such chain is given
by the simple product∏

ᾱ
dzi

zi

dq2
⊥,i

q2
⊥,i

. (6)

We note in particular that this expression is totally left–
right symmetric, meaning that we get the same result if we
start the chain in the photon end, instead of in the proton
end. (This implies that the formalism automatically takes
into account contributions from “resolved photons”.)

We can express this result in the link momenta ki, in-
stead of the final state momenta qi. For ordered chains we
have q⊥,i ≈ k⊥,i, and thus for these chains the expression
in (6) agrees with (2), but for non-ordered chains this is no
longer the case. Using the relations d2q⊥,i = d2k⊥,i and
q2
⊥,i ≈ max(k2

⊥,i, k
2
⊥,i−1) we find the following weights:

d2q⊥,i

q2
⊥,i

≈ d2k⊥,i

k2
⊥,i

for k⊥,i > k⊥,i−1

and

d2q⊥,i

q2
⊥,i

≈ d2k⊥,i

k2
⊥,i

· k2
⊥,i

k2
⊥,i−1

for k⊥,i < k⊥,i−1. (7)

Thus, for a step down in k⊥ we have an extra suppres-
sion factor k2

⊥,i/k
2
⊥,i−1, which reduces the weight for non-

ordered chains. (This suppression also implies that if the

chain goes up to k⊥,max and then down to k⊥,final we ob-
tain a factor 1/k4

⊥,max, which corresponds to the cross sec-
tion for a hard parton–parton subcollision.)

In the following we will first discuss a model for a fixed
coupling, and after that the more relevant situation with
a running αs. In Sect. 4 we discuss some effects of non-
leading terms in ln 1/x. We end by some comments on the
Laplace transforms in Sect. 5.

2 Fixed coupling

As discussed in the introduction, in the LDC and CCFM
models downward steps in k⊥ are suppressed by the factor
k2

⊥,i/k
2
⊥,i−1 in (7). Expressed in the logarithmic variable κ,

large downward steps are thus suppressed by an exponen-
tial factor exp(κi − κi−1). This implies that the effective
allowed distance, δ, for a downward step is given by the
average value of this exponential, which means

δ ∼
∫

κi

(κi−1 − κi)e−(κi−1−κi)dκi−1 = 1. (8)

This increases the phase space; the boundary is effectively
given by κi > κi−1 − δ instead of the strict ordering
κi > κi−1 in (2) relevant in the DGLAP limit. (This has
similarities with the van der Waals gas formula, where
the gas molecules take up a fixed volume. Here the corre-
sponding “volume” is negative, which thus increases the
phase space.) The result is that the phase space factor
κN/N ! is replaced by (κ + Nδ)N/N ! 1. Thus we obtain

G(x, k2
⊥) ∼

∑
N

(ᾱl)N

N !
(κ + Nδ)N

N !
. (9)

When κ is very large we can neglect the term Nδ, and
thus obtain the DGLAP result from (3):

G(x, k2
⊥) ∼

∑
N

(ᾱlκ)N

(N !)2
= I0(2

√
ᾱlκ) ≈ exp(2

√
ᾱlκ)√

4π
√

ᾱlκ
.

(10)
The last approximation is relevant when the argument of
I0 is large compared to 1.

When κ is small, it can instead be neglected compared
to Nδ, and we obtain using Sterling’s formula

G ∼
∑
N

(ᾱl)N

N !
(Nδ)N

N !
≈

∑
N

(ᾱl)N

N !
δN eN

√
2πN

≈ exp(ᾱδel)√
2πᾱδel

=
1√

2πλ ln 1/x
· 1
xλ

,

with

λ = eδᾱ. (11)
1 This result is exactly correct only if the non-ordered vari-

ables κi are allowed to take on negative values in the middle of
the chain. If all κi are restricted to be positive, we get instead
(κ + δ)[κ + (N + 1)δ]N−1/N !. This small difference does not
modify our conclusions
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Thus for δ = 1 we get λ = eᾱ = 2.72ᾱ. This should
be compared with the leading order result for the BFKL
equation, λ = 4 ln 2ᾱ = 2.77ᾱ.

We now also want to study the behavior of the sum in
(9) in the transition region between the two extreme situ-
ations. This can be estimated by the saddle point method.
Using Sterling’s formula we get from (9)

G ∼
∑
N

exp {N [ln(ᾱl) + ln(κ + Nδ) − 2 lnN + 2]}

≡
∑
N

exp{h(N)}. (12)

In this sum the terms with N -values around Nmax domi-
nate, where Nmax is the solution to the equation

h′(Nmax) = ln(ᾱl) + ln(κ + Nmaxδ) − 2 lnNmax

+
Nmaxδ

κ + Nmaxδ
= 0. (13)

Let us first assume that k⊥ is large and satisfies the
inequality Nmaxδ < κ. This implies that for the domi-
nating terms in the sum we have κ + Nδ ≈ κ, which
corresponds to the “DGLAP region” as discussed above.
Inserted into (13) this implies Nmax ≈ (ᾱlκ)1/2 + ᾱlδ.
For consistency with our assumption, we must then de-
mand this expression to be smaller than κ/δ, which im-
plies κ > ᾱ((3 + 51/2)/2)δ2l. For δ = 1 we thus obtain

κ >
3 +

√
5

2
ᾱl ≈ 2.62ᾱl. (14)

Next we assume that Nmaxδ > κ. This implies that for the
dominating terms in the sum we have κ+Nδ ≈ Nδ, which
corresponds to the BFKL region. Equation (13) now gives
Nmax ≈ ᾱlδe. Consistency with the assumption Nmax >
κ/δ now demands κ < ᾱeδ2l. For δ = 1 we therefore obtain
in this case

κ < ᾱel ≈ 2.72ᾱl. (15)

This is very close to the limit in (14). Consequently this
line in the (l, κ) plane corresponds to the transition be-
tween the BFKL and DGLAP regions. Due to the result
for the exponent λ in (11) this line can be written κ/l ≈ λ.

For small x we can also go one step further, and ex-
pand (13) in powers of κ/l. This gives Nmax ≈ eδᾱl +
κ2/(2eδ3ᾱl)− 1, which implies (with λ still given by eδᾱ)

G ∼ 1√
2πλl

exp
[
λl +

κ

δ
− κ2

2δ2λl

]
. (16)

We recognize here the Gaussian distribution with a width
proportional to λl, corresponding to a random walk in
κ. This can be compared with the result of the BFKL
equation [5]:

G ∼ 1√
2πλl

exp
[
λl +

κ

2
− κ2

∆λl

]
, ∆ =

14ζ(3)
ln 2

≈ 24.3.

(17)
We see that for δ ≈ 1 the distribution in (16) is signifi-
cantly more narrow. This is perhaps not surprising as the
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Fig. 2. The logarithm of the rescaled structure function ob-
tained for a fixed coupling, for λl = 3, which corresponds to
x ∼ 5 ·10−5. The approximations for small and large k⊥-values
are indicated by the dashed and dotted lines respectively. The
horizontal axis is the combination κ/λl, chosen so that the
transition occurs when this variable has values around 1. Cor-
responding values of k2

⊥ in GeV2 are also indicated

exponential suppression for large values of κi−1 −κi in (8)
is replaced by the sharp cut for κi = κi−1 − δ. This model
is, however, only intended to illustrate the qualitative fea-
tures and not to give a quantitative description.

The result of a numerical evaluation of (9) is presented
in Fig. 2 together with the DGLAP and BFKL approxi-
mations of (10) and (16). We have here chosen δ = 1. The
result depends only on the two combinations λl and κ/λl,
where the last combination is chosen so that the transi-
tion occurs when this variable is around 1. We see in this
figure how our result interpolates between the BFKL and
DGLAP expressions, although the normalization of the
DGLAP approximation is off by roughly a factor e, even
for large values of k⊥. An essential feature is also that
G grows monotonically with κ. The Gaussian behavior is
only obtained in an expansion of lnF to second order in
powers of κ/l.

Conclusion

The expression F(x, k2
⊥) ∼ ᾱ

∑
N ((ᾱl)N/N !)(κ + Nδ)N/

N ! with δ ≈ 1 reproduces DGLAP evolution (or more
correctly the double log approximation ∼ exp(2(ᾱlκ)1/2))
for large values of κ/l, and reproduces BFKL evolution
∼ x−λ with λ ≈ eᾱ for smaller κ/l. The transition occurs
for a fixed ratio between κ and l:

κ

l
=

ln k2
⊥

ln 1/x
≈ λ ≈ eᾱ. (18)

We also note that the structure function grows monotoni-
cally with increasing ln k2

⊥, in contrast to the Gaussian dis-
tribution in the BFKL approximation, related to a random
walk in ln k2

⊥. The Gaussian distribution is only obtained
in a second order expansion in κ/l.
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3 Running coupling

For a running coupling we use the notation

ᾱ =
3αs

π
≡ α0

κ
,

u ≡ ln(κ/κcut) = ln ln(k2
⊥/Λ2) − ln ln(k2

⊥cut/Λ
2),

G ≡ κ

α0
· F . (19)

As we only include purely gluonic chains, it would be most
consistent to use the value for αs obtained for no flavors,
which corresponds to α0 = 12/11 ≈ 1. In (6) the scale
in αs at a certain vertex should be given by the largest of
the associated virtualities, which means max(k2

⊥,i, k
2
⊥,i−1).

For a step up this is k2
⊥,i, and thus the running coupling

contains a factor 1/κi. For these steps we also have q⊥ ≈
k⊥, and thus the weight in (6) becomes∏ α0

κi
dlidκi =

∏
α0dlidui. (20)

In the DGLAP region u is large, and downward steps can
be neglected. In analogy with (3) and (10) we then find
the well-known result

G ∼
∑

αN
0

lN

N !
· uN

N !
= I0(2

√
α0lu), (21)

which resembles (10) for fixed coupling, only with ln k2
⊥

replaced by ln ln k2
⊥.

Including downward steps we see, however, that the
effect of the suppression factor k2

⊥,i/k
2
⊥,i−1 becomes quite

different for a running coupling compared to the case with
a fixed coupling. Expressed in the variables ui, this factor
is

exp[−(eui−1 − eui)] ∼ exp[−eui−1(ui−1 − ui)]. (22)

When ui and ui−1 are large, this factor drops rapidly with
increasing difference ui−1 −ui. This implies that it is easy
to go down when ui and ui−1 are small, but very difficult
when they are large. A consequence of this feature is the
result observed in [6], that a typical chain contains two
parts. In the first part the k⊥-values are relatively small,
and it is therefore easy to go up and down in u (or k⊥),
and non-ordered k⊥-values are important. The second part
is an ordered, DGLAP-type, chain, where k⊥ increases
towards its final value. In [7] we also found that for large
l (small x) an approximate solution to the LDC equation
has the factorized form

G ∼ 1
xλ

· κα0/λ. (23)

Let us study a chain with N links, out of which N − k
correspond to the first part with small non-ordered k⊥,
and the remaining k links belong to the second part with
increasing k⊥. Assuming that the effective space for each
ui in the soft part is given by a quantity ∆, we will below
estimate its magnitude. The total weight for this part then
becomes ∆N−k. For the k links in the second, ordered, part

the phase space becomes as before uk/k!. Thus the total
result is

G ∼
∑
N

(α0l)N

N !

N∑
k=0

uk

k!
∆N−k

=
∑
N

(α0l∆)N

N !

N∑
k=0

(u/∆)k

k!
. (24)

We first study the behavior of this expression in the two
extreme situations with small and large k⊥-values. domi-
nate.
(i) BFKL limit, u small.

Assume first that u/∆ is small compared to dominat-
ing values of N . Then the sum over k gives approximately
exp(u/∆). Thus G takes the form

G ∼
∑
N

(α0l∆)N

N !
exp(u/∆)

= exp(α0l∆ + u/∆) =
1
xλ

· κα0/λ, (25)

where
λ = α0∆. (26)

We note that this result has just the factorized form of
(23), which was obtained in [7]. From (25) we see that
our assumptions imply that the sum over N is dominated
by N -values around α0l∆. For consistency we therefore
demand u/∆ < α0l∆ or

u < α0l∆
2 =

λ2l

α0
. (27)

(ii) DGLAP limit, u large.
We now assume that u is so large that u/∆ is larger

than N for the most important values of N . The sum over
k is then dominated by its last term, (u/∆)N/N !, which
gives the result in (21):

G ∼
∑
N

(α0lu)N

(N !)2
= I0(2

√
α0lu). (28)

Using Sterling’s formula we find that in this case the
sum is dominated by N -values around Nmax = (α0lu)1/2.
For consistency we therefore now demand

u/∆ >
√

α0lu or u > α0l∆
2 =

λ2l

α0
. (29)

We see that this limit coincides exactly with the BFKL
limit in (27). Thus the regions of validity for the BFKL
and DGLAP approximations of (25) and (28) respectively
join at the common boundary for the fixed ratio between
u and l:

u/l ≈ λ2/α0. (30)

These results are confirmed by a numerical evaluation of
(24) presented in Fig. 3. Introducing the variables v = λl
and w = (α0u)/(λ2l) we have
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lnG ∼ v(1 + w), w < 1 (BFKL),
lnG ∼ ln I0(2v

√
w) (31)

≈ 2v
√

w − 1
2
ln(4πv

√
w), w > 1 (DGLAP).

The variables v and w are chosen so that the transition
occurs around w = 1. Note that the asymptotic approxi-
mation for the Bessel function, I0(z) ≈ exp(z)/(2πz)1/2,
is relevant in all of the interesting kinematic region. The
model should be applied to small x. For x < 0.03 and
λ ∼ 0.3 we have λl > 1, which together with the con-
straint in (29) implies that α0lu > 1. Thus the argument
in the Bessel function is here always larger than 2, and for
these values the error in the approximation is less than
10%.

It is also interesting to rewrite (24) in the following
form, where m = N − k:

G ∼
∑
m

(α0l∆)m
∞∑

N=m

(α0lu)N−m

N !(N − m)!

=
∑
m

(
α0l∆

2

u

)m/2

Im(2
√

α0lu). (32)

Here m is the number of steps in the initial non-ordered
part, and Im are modified Bessel functions. The DGLAP
approximation in (28) corresponds to just the first term
with m = 0, and Fig. 3b shows how this series approaches
the full result when more terms are included.

Estimate of the effective phase space ∆

We now want to study in more detail the initial part of
the chain, where k⊥ is small, αs large and where it there-
fore is easy to go up and down in k⊥. If αs is assumed to
be proportional to 1/κ, the result is sensitive to the in-
frared region, and thus depends on the effective cutoff for
small k⊥ [7,5]. Experience from the LDC MC shows that
long chains often have the form illustrated in Fig. 4, with
alternating steps up and down in k⊥. Occasionally there
are also two steps in the same direction (e.g. the step κ4
in Fig. 4). Neglecting such “stairs” will underestimate the
power λ but, as we will see, qualitatively it does reproduce
the dependence of λ on the cutoff.

Let us study two typical steps, a step up to a high
level κ1, followed by a step down to a low level κ2 (cf.
Fig. 4). (For simplicity we use the indices 1 and 2, even
if these steps are not in the beginning of the chain.) The
definition of ∆ implies that the κ- integrations in these
two steps (including the factors ᾱ(κ)) should correspond
to a factor (α0∆)2. In each vertex the argument in αs
is given by the largest of the adjacent k⊥-values. This
implies in this case two factors α0/κ1 and no factor α0/κ2.
(Due to the singular behavior of αs, we should not neglect
the difference between α0/κ1 and α0/κ2 for these low κ-
values.) Neglecting constraints other than the fact that κ1
must be larger than κ2, we therefore get as a first estimate
the relation
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Fig. 3. a The logarithm of the rescaled structure function for
a running coupling. λl = 3, which corresponds to x ∼ 5 · 10−5.
The approximations for small and large k⊥-values are indicated
by the dashed and dotted lines respectively. The horizontal axis
is the combination α0u/(λ2l), chosen so that the transition
occurs when this variable has values around 1. Corresponding
values of k2

⊥ in GeV2 are also indicated. b The contributions
from the first three terms in (32). Note that m = 0 corresponds
to the DGLAP limit
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Fig. 4. The initial part of a chain dominated by alternating
steps up and down in κ

(α0∆)2 =
∫ ∞

κc

(
α0

κ1

)2

dκ1dκ2θ(κ1 − κ2)

× exp[−(1 + λ)(κ1 − κ2)]. (33)

Here κc ≡ ln(k2
⊥cut/Λ

2). A factor exp[−(κ1 − κ2)] corre-
sponds to the factor k2

⊥,i/k
2
⊥,i−1 in (7) when k⊥ is de-

creasing. A further factor exp[−λ(κ1 − κ2)] follows be-
cause κ1 − κ2 is the minimum step in l = ln 1/x, and in
this interval there can be no other vertices. Without such
a constraint G would in this l-interval grow by a factor
exp[λ(κ1 − κ2)], and the constraint therefore corresponds
to the compensating factor exp[−λ(κ1 − κ2)] in the inte-
grand.

In the estimate in (33) the constraints κ1 > κ0 and
κ2 < κ3 are not taken into account. Most important is
here the first inequality. Due to the factor 1/κ2

1, small
κ1-values give a large contribution to the integral in (33),
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which is reduced when the constraint κ1 > κ0 is taken into
account. Integrating over κ1, we obtain from (33) also the
normalized distribution, P (κ2), in κ2:

P (κ2) =
1

eλ̂κcE1(λ̂κc)

{
1
κ2

− λ̂eλ̂κ2E1(λ̂κ2)
}

, (34)

where the function E1 is an exponential integral and λ̂ ≡
1 + λ. Within our approximation, this expression also de-
scribes the distribution in the earlier “low step” κ0. Thus
the constraint κ1 > κ0 gives an extra weight (where P is
given by (34))

Prob(κ0 < κ1) =
∫ κ1

κc

P (κ0)dκ0 = 1 − eλ̂κ1E1(λ̂κ1)

eλ̂κcE1(λ̂κc)
.

(35)
Including this factor in the integrand in (33) we obtain
(after integrating over κ2) the relation

∆2 =
∫ ∞

κc

(
1
κ1

)2

dκ1

[
1 − eλ̂κ1E1(λ̂κ1)

eλ̂κcE1(λ̂κc)

]
1

λ̂

×
[
1 − e−λ̂(κ1−κc)

]
. (36)

It would be possible to include a similar factor represent-
ing the constraint κ2 < κ3, and then, in an iterative
scheme, also use the improved distributions to find new
weights. This procedure would, however, be algebraically
quite complicated, and not would not be motivated in view
of the qualitative nature of our approximation.

A numerical evaluation of the integral in (36) gives the
relation between ∆ = λ/α0 and κc presented in Fig. 52. In
this figure we also show the exact result presented in [7],
obtained by solving an integral equation which includes
the effect from all possible chains. The dotted line is ob-
tained using a more accurate integration over the azimuth
angles, while the dashed line is obtained using the approx-
imations in (7), and therefore corresponds more directly to
our present model. We see that the result from (36) indeed
well reproduces the qualitative behavior of the full solu-
tion. The neglect of “double steps” in the chains implies
a somewhat lower value for ∆ (our result lies between the
two curves from [7]), but the qualitative agreement gives
further support to our assumption that this type of chains
gives the dominant contribution for small x, for both large
and small k2

⊥.

Conclusion

For a running coupling it is easy to go up and down in k⊥,
only as long as k⊥ is small and αs large. Therefore dom-
inating chains contain a non-ordered part with small k⊥-
values, and an ordered part, where k⊥ increases towards

2 We note that the integral in (36) is a function only of the
product λ̂κc. Thus the relation between ∆ and κc is easily
obtained by calculating the integral for different values of λ̂κc.
This gives directly ∆ and its corresponding value for κc =
λ̂κc/(1 + ∆α0)
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Fig. 5. The effective phase space ∆ = λ/α0 as a function of
κcut = ln(k2

⊥cut/Λ2). The estimate from (36) is shown together
with the results from solving the LDC integral equation in [7].
Here the upper (dashed) line is obtained using the approxima-
tions in (7), which are also used in our model

its final value. If the effective phase space for the variables
ui = ln k2

⊥i in the non-ordered part is denoted ∆, then
the expression in (24) interpolates smoothly between the
DGLAP and BFKL regions. The BFKL exponent is given
by λ = α0∆, and the transition between the regimes oc-
curs for a fixed ratio between u = ln ln k2

⊥ and l = ln(1/x),
u/l ≈ λ2/α0.

4 Non-leading contributions

The replacement κN → (κ + Nδ)N in (9) includes the
effect of non-leading terms in ln k2

⊥. In [2] it is discussed
how a similar modification of the factor lN can account
for some non-leading ln 1/x effects.

It is well known that non-leading contributions have a
significant influence on the value of the BFKL exponent λ
[2,8]. The 1/z pole in the splitting function gives the lead-
ing contribution to the growth of the structure functions
for small x. The contribution from the 1/(1 − z) pole is
compensated by a Sudakov form factor [1]. This is related
to the fact that, when a gluon is split into two gluons with
energy fractions z and 1 − z with z << 1, then the softer
one can be regarded as a new emission, while the harder
one (with energy 1− z) corresponds to the original parent
gluon, only with slightly reduced energy. Instead of includ-
ing the 1/z pole for 0 < z < 1 and neglecting the 1/(1−z)
pole, it would also be possible to take both poles into ac-
count, but restrict the z-interval to 0 < z < 0.5. This gives
approximately the same result due to the relation∫ 1

ε

1
z
dz =

∫ 0.5

ε

[
1
z
+

1
1 − z

]
dz = ln 1/ε. (37)

Including the non-singular terms in the splitting function

Pgg ∝ 1
z
+

1
1 − z

− 2 + z(1 − z) (38)



G. Gustafson, G. Miu: A simple model for the BFKL–DGLAP transition in deep inelastic scattering 273

reduces this integral. Integrating from ε to 0.5 gives∫ 0.5

ε

Pgg(z)dz ∝ ln 1/ε − 11
12

. (39)

In analogy with (37) we get exactly the same result if
we split Pgg in the following way in two symmetric parts,
singular at z = 0 and z = 1 respectively:

Pgg ∝ 1 + (1 − z)3

2z
+

1 + z3

2(1 − z)
, (40)

and then integrate the first term from 0 to 1. (This division
corresponds to the separation used in the dipole cascade
model [9], but the same result is obtained for any other
symmetric separation.) The result in (39) implies that the
effective phase space for the li integrations in e.g. (2) is
reduced. It corresponds to an effective limit ln 1/zi = li −
li−1 > a instead of li − li−1 > 0, with a ≈ 11/12. This
means that instead of the factor lN/N !, the li integrals
give the result (l − aN)N/N !. Thus in (9) and (24) we
should make the substitutions

lN/N ! → (l − aN)N/N !. (41)

Such a substitution was discussed in [2] and shown to im-
ply a significant reduction in the value of λ. Using Ster-
ling’s formula it is easy to show the following relation be-
tween the old value λ and the new one, called λ′:

ln
λ

λ′ = aλ′. (42)

Thus for a = 11/12 and λ = 0.5 we obtain λ′ ≈ 0.35.
In principle this effect is, however, not restricted to a

reduction of the exponent λ. The factor (l−aN)N/N ! also
means that there is a strict upper limit, N < l/a, to the
sum over N in (9) and (24). The increase for very large
k⊥-values is due to contributions from large values of N ,
and therefore this restriction implies that the distribution
in κ will turn over for large values of κ. In the large k⊥-
limits of (10) and (28) the dominating contributions come
from N -values around Nmax = (ᾱlκ)1/2 (fixed coupling) or
Nmax = (α0lu)1/2 (running coupling). Therefore there is a
suppression for k⊥-values such that Nmax > l/a ≈ l, which
means κ > l/ᾱ for fixed coupling and u = ln(κ/κc) >
l/α0 for running coupling. For running coupling and small
x this corresponds, however, to unrealistically large k⊥-
values. Consequently the dominant effect of these non-
leading terms is just a reduction of the BFKL exponent λ,
in accordance with (42). (This reduction also implies that
the boundary between the BFKL and DGLAP regimes
becomes somewhat modified. Thus the ratios in (18) and
(30) are reduced by a factor λ′/(λ(1 + aλ′)).)

5 Laplace transforms

Taking the Laplace transform of the sum in (9), relevant
for a fixed coupling, does not give a simple expression.

However, for a running coupling it is easy to calculate the
Laplace transforms of the expression in (24). For the single
Laplace transform we find

G̃(ω, u) =
∫

dle−ωlG(l, u) =
1

ω − λ
· eα0u/ω. (43)

Thus we have a simple pole for ω = λ and an essential
singularity for ω = 0. The simple pole is in contrast to the
case with a fixed coupling, where the factor (ln 1/x)−1/2

in (11) implies a cut for ω < λ. Denoting the mth term in
the series in (32) by Gm(l, u) we also find

G̃m(ω, u) =
1
ω

(
λ

ω

)m

· eα0u/ω. (44)

Here we see how the contributions for different m-values
add up to the pole at ω = λ, and thus to the power-like
increase ∼ x−λ for small x.

Including the non-leading effects from the substitution
in (41), the result is somewhat more complicated, but the
singularity at ω = λ is still a simple pole and not a cut.

Finally we note that the double Laplace transform of
(24) has a very simple form (note that this is the Laplace
transform in u = ln ln k2

⊥ and not in ln k2
⊥):

G̃(ω, γ) =
∫

dle−ωl

∫
due−γuG(l, u)

=
1

(ω − λ)
(
γ − α0

ω

) . (45)

6 Summary

A simple model is presented, which interpolates smoothly
between the DGLAP and BFKL regimes. It is based on
the CCFM and LDC models and incorporates the most
essential features of these models. Although not meant
for quantitative analyses, it provides an intuitive picture
of the transition between the two domains.

To leading order in ln 1/x we get for a constant cou-
pling

F(x, k2
⊥) ≈ ᾱ

∑
N

(ᾱl)N

N !
(κ + Nδ)N

N !
, (46)

where F is the non-integrated gluon structure function,
l = ln 1/x, κ = ln k2

⊥, and ᾱ = 3αs/π. The parameter δ
should be of order 1, and the BFKL power is given by
λ = eδᾱ, which is very close to the leading order BFKL
result. The transition between the DGLAP and BFKL
regimes occurs for the fixed ratio

κ

l
=

ln k2
⊥

ln 1/x
≈ eᾱ. (47)

For a running coupling we get instead

κ

α0
F ≡ G ≈

∑
N

(α0l∆)N

N !

N∑
k=0

(u/∆)k

k!
, (48)
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where u = ln ln k2
⊥ − ln ln k2

⊥cut and α0 is defined by the
relation 3αs/π = α0/κ. The parameter ∆ is sensitive to
the cutoff for small k⊥ (see Fig. 5), and related to the
BFKL power by the equation λ = α0∆. In this case the
transition occurs for

u

l
=

ln ln k2
⊥

ln 1/x
≈ λ2

α0
. (49)

Some non-leading effects in ln 1/x can be taken into
account by replacing the factor lN in (9) and (24) by (l −
aN)N with a ≈ 11/12. The result is mainly just a smaller
value for the BFKL exponent λ (in agreement with results
in [2,4]).

While the Laplace transform for a fixed coupling has
a cut for ω < λ, for a running coupling the singularity at
ω = λ is only a simple pole.
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